

Yagot - Yet Another Garbage Object Tracker for Python

	1. Introduction
	1.1. Usage

	1.2. Installation

	2. Background
	2.1. Understanding object release in Python

	2.2. The issues with collected and uncollectable objects

	2.3. Circular reference examples and detection

	2.4. Tools

	3. Yagot pytest plugin

	4. API reference
	4.1. yagot.garbage_checked

	4.2. yagot.GarbageTracker

	4.3. yagot.__version__

	5. Development
	5.1. Repository

	5.2. Setting up the development environment

	5.3. Building the documentation

	5.4. Testing

	5.5. Contributing

	5.6. Releasing a version to PyPI

	5.7. Starting a new version

	6. Appendix
	6.1. Compatibility and deprecation policy

	6.2. Troubleshooting

	6.3. Glossary

	6.4. References

	7. Change log
	7.1. yagot 0.5.0

1. Introduction

Yagot (Yet Another Garbage Object Tracker) is a tool for Python developers to
help find issues with garbage collection and memory leaks:

	It can determine the set of collected objects caused by a function or
method.

Collected objects are objects Python could not immediately release when they
became unreachable and that were eventually released by the Python garbage
collector. Frequently this is caused by the presence of circular references
into which the object to be released is involved. The garbage collector is
designed to handle circular references when releasing objects.

Collected objects are not a problem per se, but they can contribute to
large memory use and can often be eliminated.

	It can determine the set of uncollectable objects caused by a function or
method.

Uncollectable objects are objects Python was unable to release during garbage
collection, even when running a full collection (i.e. on all generations of
the Python generational garbage collector).

Uncollectable objects remain allocated in the last generation of the garbage
collector. On each run on its last generation, the garbage collector attempts
to release these objects. It seems to be rare that these continued attempts
eventually succeed, so these objects can basically be considered memory leaks.

See section
Background
for more detailed explanations about object release in Python.

Yagot is simple to use in either of the following ways:

	It provides a pytest [https://docs.pytest.org/] plugin named yagot that
detects collected and
uncollectable objects caused by the test cases. This detection is enabled by
specifying command line options or environment variables and does not require
modifying the test cases.

	It provides a Python decorator named
garbage_checked()
that detects collected and uncollectable objects caused by the decorated
function or method. This allows using Yagot independent of any test framework
or with other test frameworks such as nose [https://nose.readthedocs.io/] or unittest [https://docs.python.org/3/library/unittest.html].

Yagot works with a normal (non-debug) build of Python.

1.1. Usage

Here is an example of how to use Yagot to detect collected objects caused by
pytest test cases using the command line options provided by the
Yagot pytest plugin:

$ cat examples/test_1.py
def test_selfref_dict():
 d1 = dict()
 d1['self'] = d1

$ pytest examples --yagot -k test_1.py
===================================== test session starts ======================================
platform darwin -- Python 3.7.5, pytest-5.3.5, py-1.8.1, pluggy-0.13.1
rootdir: /Users/maiera/PycharmProjects/yagot/python-yagot
plugins: cov-2.8.1, yagot-0.1.0.dev1
yagot: Checking for collected and uncollectable objects, ignoring types: (none)
collected 2 items / 1 deselected / 1 selected

examples/test_1.py .E [100%]

== ERRORS ==
____________________________ ERROR at teardown of test_selfref_dict ____________________________

item = <Function test_selfref_dict>

 def pytest_runtest_teardown(item):
 """
 py.test hook that is called when tearing down a test item.

 We use this hook to stop tracking and check the track result.
 """
 config = item.config
 enabled = config.getvalue('yagot')
 if enabled:
 import yagot
 tracker = yagot.GarbageTracker.get_tracker()
 tracker.stop()
 location = "{file}::{func}". \
 format(file=item.location[0], func=item.name)
> assert not tracker.garbage, tracker.assert_message(location)
E AssertionError:
E There were 1 collected or uncollectable object(s) caused by function examples/test_1.py::test_selfref_dict:
E
E 1: <class 'dict'> object at 0x10df6ceb0:
E {'self': <Recursive reference to dict object at 0x10df6ceb0>}
E
E assert not [{'self': {'self': {'self': {'self': {'self': {...}}}}}}]
E + where [{'self': {'self': {'self': {'self': {'self': {...}}}}}}] = <yagot._garbagetracker.GarbageTracker object at 0x10df15f10>.garbage

yagot_pytest/plugin.py:148: AssertionError
=========================== 1 passed, 1 deselected, 1 error in 0.07s ===========================

Here is an example of how to use Yagot to detect collected objects caused by a
function using the
garbage_checked()
decorator on the function.
The yagot pytest plugin is loaded in this example and it presence is reported
by pytest, but it is not used:

$ cat examples/test_2.py
import yagot

@yagot.garbage_checked()
def test_selfref_dict():
 d1 = dict()
 d1['self'] = d1

$ pytest examples -k test_2.py
===================================== test session starts ======================================
platform darwin -- Python 3.7.5, pytest-5.3.5, py-1.8.1, pluggy-0.13.1
rootdir: /Users/maiera/PycharmProjects/yagot/python-yagot
plugins: cov-2.8.1, yagot-0.1.0.dev1
collected 2 items / 1 deselected / 1 selected

examples/test_2.py F [100%]

=== FAILURES ===
______________________________________ test_selfref_dict _______________________________________

args = (), kwargs = {}, tracker = <yagot._garbagetracker.GarbageTracker object at 0x1078853d0>
ret = None, location = 'test_2::test_selfref_dict'
@py_assert1 = [{'self': {'self': {'self': {'self': {'self': {...}}}}}}], @py_assert3 = False
@py_format4 = "\n~There were 1 collected or uncollectable object(s) caused by function test_2::test_selfref_dict:\n~\n~1: <class 'di...elf': {'self': {'self': {'self': {...}}}}}}] = <yagot._garbagetracker.GarbageTracker object at 0x1078853d0>.garbage\n}"

 @functools.wraps(func)
 def wrapper_garbage_checked(*args, **kwargs):
 "Wrapper function for the garbage_checked decorator"
 tracker = GarbageTracker.get_tracker()
 tracker.enable(leaks_only=leaks_only)
 tracker.start()
 tracker.ignore_types(type_list=ignore_types)
 ret = func(*args, **kwargs) # The decorated function
 tracker.stop()
 location = "{module}::{function}".format(
 module=func.__module__, function=func.__name__)
> assert not tracker.garbage, tracker.assert_message(location)
E AssertionError:
E There were 1 collected or uncollectable object(s) caused by function test_2::test_selfref_dict:
E
E 1: <class 'dict'> object at 0x1078843c0:
E {'self': <Recursive reference to dict object at 0x1078843c0>}
E
E assert not [{'self': {'self': {'self': {'self': {'self': {...}}}}}}]
E + where [{'self': {'self': {'self': {'self': {'self': {...}}}}}}] = <yagot._garbagetracker.GarbageTracker object at 0x1078853d0>.garbage

yagot/_decorators.py:67: AssertionError
=============================== 1 failed, 1 deselected in 0.07s ================================

In both usages, Yagot reports that there was one collected or uncollectable
object caused by the test function. The assertion message
provides some details about that object. In this case, we can see that the
object is a dict object, and that its ‘self’ item references back to the
same dict object, so there was a circular reference that caused the object
to become a collectable object.

That circular reference is simple enough for the Python garbage collector to
break it up, so this object does not become uncollectable.

The failure location and source code shown by pytest is the wrapper function of
the garbage_checked decorator and the pytest_runtest_teardown function
since this is where it is detected. The decorated function or pytest test case
that caused the objects to be created is reported in the assertion message
using a “module::function” notation.

Knowing the test function test_selfref_dict() that caused the object to
become a collectable object is a good start for identifying the problem code,
and in our example case it is easy to do because the test function is simple
enough. If the test function is too complex to identify the culprit, it can be
split into multiple simpler test functions, or new test functions can be added
to check out specific types of objects that were used.

As an exercise, test the standard dict class and the
collections.OrderedDict class by creating empty dictionaries. You will find
that on CPython 2.7, collections.OrderedDict causes collected objects (see
issue9825 [https://bugs.python.org/issue9825]).

The garbage_checked decorator can be combined with any other decorators in any
order. Note that it always tracks the next inner function, so unless you want
to track what garbage other decorators create, you want to have it directly on
the test function, as the innermost decorator, like in the following example:

import pytest
import yagot

@pytest.mark.parametrize('parm2', [...])
@pytest.mark.parametrize('parm1', [...])
@yagot.garbage_checked()
def test_something(parm1, parm2):
 pass # some test code

1.2. Installation

1.2.1. Supported environments

Yagot is supported in these environments:

	Operating Systems: Linux, Windows (native, and with UNIX-like environments),
OS-X

	Python: 2.7, 3.4, and higher

1.2.2. Installing

	Prerequisites:

	The Python environment into which you want to install must be the current
Python environment, and must have at least the following Python packages
installed:

	setuptools

	wheel

	pip

	Install the yagot package and its prerequisite Python packages into the
active Python environment:

$ pip install yagot

1.2.3. Installing a different version

The examples in the previous sections install the latest version of Yagot that
is released on PyPI [https://pypi.python.org/pypi]. This section describes how different versions of Yagot
can be installed.

	To install an older released version of Yagot, Pip supports specifying a
version requirement. The following example installs Yagot version 0.1.0 from
PyPI:

$ pip install yagot==0.1.0

	If you need to get a certain new functionality or a new fix that is
not yet part of a version released to PyPI, Pip supports installation from a
Git repository. The following example installs yagot
from the current code level in the master branch of the
python-yagot repository [https://github.com/andy-maier/python-yagot]:

$ pip install git+https://github.com/andy-maier/python-yagot.git@master#egg=yagot

1.2.4. Verifying the installation

You can verify that yagot is installed correctly by
importing the package into Python (using the Python environment you installed
it to):

$ python -c "import yagot; print('ok')"
ok

In addition, you can verify that pytest picks up the yagot plugin, by
looking at the pytest help. If it shows the yagot options, the plugin
has been properly picked up:

$ pytest --help | grep yagot
--yagot Enables checking for collected and uncollectable
--yagot-leaks-only Limits the checking to only uncollectable (=leak)
--yagot-ignore-types=TYPE[,TYPE[...]]

In case of trouble with the installation, see the Troubleshooting
section.

2. Background

2.1. Understanding object release in Python

This section explains how Python releases objects, the role of the Python
garbage collector, the role of object references, and how memory leaks can
exist in Python. It is a rather brief description just enough to understand
what is relevant to your Python program.
Unless otherwise stated, the description applies to CPython with its
generational cyclic garbage collector (introduced in CPython 2.0).

Python has two mechanisms for releasing objects:

	Immediate release based on reference counting:

If the reference count of an object drops to zero (e.g. because its
referencing variable goes out of scope), the reference count of all objects
it references are decreased by one, and the original object is immediately
released.

Those referenced objects whose reference count drops to zero as a result of
being decreased will in turn be immediately released.

If it triggers, this process always succeeds. If the original object is
involved in circular references, the process does not trigger in the first
place, because the reference count of the original object never drops to zero.

	Asynchronous release during garbage collection:

Objects that can possibly be involved in circular references are tracked by
the Python garbage collector. Python schedules runs of the garbage collector
based on object allocation and deallocation heuristics. The garbage collector
is able to release isolated sets of objects with circular references by
breaking up these circular references.

As an optimization, the garbage collector has 3 generations, and the
heuristics are optimized such that younger generations are collected more
often than older generations.

There are circumstances whereby multiple collection runs are necessary to
release objects, and where objects can end up as uncollectable, meaning they
normally stay around until the Python process terminates.

When an object is created, Python decides whether or not the object is tracked
by the garbage collector. Whether an object is tracked or not can change over
the lifetime of the object. The gc.is_tracked() [https://docs.python.org/2/library/gc.html#gc.is_tracked] function returns
whether a particular object is currently tracked or untracked.

Untracked objects are not listed in any generation of the garbage collector,
so their release can only be done by the reference counting mechanism.
Python guarantees that objects that are untracked are not involved in circular
object references so their reference count does have a chance to drop to zero.

Tracked objects may or may not be involved in circular references. If they are
not, their release happens via the reference counting mechanism. If they are,
a garbage collection run (on the generation they are in) can release them.
During each collection run on a generation, the garbage collector examines the
objects in that generation to find isolated sets of objects with circular
references that are unreachable from outside of themselves. The garbage
collector tries to break up circular references to release such sets of objects.

Objects that become tracked (either at object creation or later) are always put
into the first generation of the garbage collector. When a garbage collection
run on a particular generation does not succeed in releasing an unreachable
isolated set of objects, the objects are moved into the next (older) generation.

Objects in the last (oldest) generation that survive a collection run stay in
the last generation. They will be attempted to be released again and again
during future runs of the garbage collector on the last generation. In most
cases, that will not succeed, but there are cases where it will. Unreachable
isolated set of objects in the last generation of the garbage collector are
called uncollectable objects and unless a future run succeeds in releasing
them, they remain allocated until the Python process terminates.

Uncollectable objects may be considered memory leaks, but this distinction is
not black and white because they may be successfully released in a future run
of the garbage collector on the last generation.

Among the possible reasons for objects to become uncollectable are:

	Before Python 3.4, the presence of the
__del__() method [https://docs.python.org/3/reference/datamodel.html]
in a set of unreachable objects involved in circular references caused these
objects to be uncollectable.
The reason is that Python cannot safely decide for an order in which the
__del__() methods should be invoked, because they might be using the
reference to another object in the cycle. In Python 3.4,
PEP 442 – Safe object finalization [https://www.python.org/dev/peps/pep-0442/]
was implemented which ensures that the __del__() methods are invoked
exactly once in all cases, but in a set of objects that has reference cycles,
the order of invocation is undefined. Also, this change no longer causes
objects with circular references to become uncollectable just because they
have a __del__() method.

	Reference counting bugs in Python modules implemented in native languages
such as C may cause objects to be uncollectable. For example, a Python module
implemented in C could properly increase an object reference upon creation but
forget to decrease it upon deletion. That will prevent the reference count
from dropping to zero and thus will successfully prevent not only the
immediate object release but also any future attempt of the garbage collector
to release it.

If you want to understand this in more detail, here are a few good resources:

	Garbage collection in Python: things you need to know (Artem Golubin) [https://rushter.com/blog/python-garbage-collector/]

	Design of CPython’s Garbage Collector (Pablo Galindo Salgado) [https://devguide.python.org/garbage_collector/]

	Python garbage collection (Digi.com) [https://www.digi.com/resources/documentation/digidocs/90001537/references/r_python_garbage_coll.htm]

	Garbage Collection for Python (Neil Schemenauer) [http://arctrix.com/nas/python/gc/]

	Safely using destructors in Python (Eli Bendersky) [https://eli.thegreenplace.net/2009/06/12/safely-using-destructors-in-python]

	Python destructor and garbage collection notes (Ferry Boender) [https://www.electricmonk.nl/log/2008/07/07/python-destructor-and-garbage-collection-notes/]

	Finalizer (Wikipedia) [https://en.wikipedia.org/wiki/Finalizer]

	Object resurrection (Wikipedia) [https://en.wikipedia.org/wiki/Object_resurrection]

2.2. The issues with collected and uncollectable objects

For short-running Python programs (e.g. command line utilities), it is mostly
not so important if there are some memory leaks and other resource leaks. On
most operating systems, resource cleanup at process termination is very thorough
and resources such as open files are cleaned up properly. This should not be
understood as advocating to be careless there, but the negative effect is less
severe on short-running programs compared to long-running programs.

If your Python package provides modules for use by other code, you usually
cannot predict whether it will be used in short-running or long-running
programs. Therefore, resource usage in a Python module should be designed with
the worst case assumption in mind, i.e. that it is used by an infinitely running
piece of code.

The remainder of this section explains the issues with collected and
uncollectable objects caused during object release and how to address them:

	Issues with uncollectable objects:

	They often stay around until the Python process terminates, and thus can be
considered memory leaks.

	The garbage collector attempts to release them again and again on every
collection run of its last generation, causing repeated unnecessary
processing.

In Python 3.4 or higher, the reasons for uncollectable objects have diminished
very much and their presence usually indicates a bug. You should use tools
that can detect uncollectable objects and then analyze each case to find out
what caused the object to be uncollectable.

	Issues with collected objects:

	Increased processing overhead caused by the collector runs (compared to
immediate release based on reference counting).

	Suspension of all other activity in the Python process when the garbage
collector runs.

	The amount of memory bound to these objects until the garbage collector
will run for the next time. Automatic runs of the garbage collector are
triggered by heuristics that are based on the number of objects and not on
the amount of memory bound to these objects, so it is possible to have
a small number of collectable objects with large amounts of memory
allocated, that are still not triggering a garbage collector run.

Suitable measures to address these issues with collected objects:

	Redesign to avoid circular references.

	Replacement of normal references with
weak references [https://docs.python.org/3/library/weakref.html] to
get rid of circular references. Using weak references requires to be able
to handle the case where the referenced object is unexpectedly gone, which
can be properly detected.

	Manually triggering additional garbage collector runs via
gc.collect() [https://docs.python.org/2/library/gc.html#gc.collect]. There are very few cases though where this actually
improves anything. One reasonable case might be to trigger a collection
after application startup to release the many objects that have been used
temporarily during configuration and initial startup processing.

	Issues with the __del__() method on objects that are involved in circular
references on Python before 3.4:

	The __del__() methods are not invoked, so the resource cleanup
designed to be done by them does not happen.

	In addition, the objects become uncollectable.

Suitable measures to address these issues with the __del__() method:

	The use of
context managers [https://docs.python.org/3/library/stdtypes.html#typecontextmanager]
is a good alternative to the use of the __del__() method, particularly
on Python before 3.4.

2.3. Circular reference examples and detection

This section shows some simple examples of circular references.

Let’s first look at a simple way to surface circular references. The
approach is to create an object, make it unreachable, and check whether a run
of the garbage collector releases an object. If the object is involved in
circular references, its reference count will not drop to zero when it becomes
unreachable, but the garbage collector will be able to break up the circular
references and release it. If the object is not involved in circular references,
it will be released when it becomes it unreachable, and the garbage collector
does not have anything to do with it (even when it was tracked).

This is basically the approach Yagot uses, although in a more automated fashion.

$ python
>>> import gc
>>> gc.collect() # Run full garbage collection to have a reference
0 # No objects collected initially (in this simple case)
>>> obj = dict()
>>> len(gc.get_referrers(obj))
1 # The dict object has one referrer (the 'obj' variable)
>>> obj['self'] = obj
>>> len(gc.get_referrers(obj))
2 # The dict object now in addition has its 'self' item as a referrer
>>> gc.collect()
0 # Still no new objects collected
>>> del obj # The dict object becomes unreachable ...
>>> gc.collect()
1 # ... and was released by the next garbage collection run

The interesting part happens during the del obj statement. The del obj
statement removes the name obj from its namespace. That causes the reference
count of the dict [https://docs.python.org/3/library/stdtypes.html#dict] object to drop by one. Because of the circular
reference back from its ‘self’ item, the reference count is still 1, so it will
not be released at that point. The call to gc.collect() [https://docs.python.org/2/library/gc.html#gc.collect] triggers a full
garbage collection run on all generations, which successfully breaks up the
circular reference and releases the object, as reported by its return value
of 1.

Here are some examples for circular references. You can inspect them using
the approach described above:

	List with a self-referencing item. This is not really useful code,
but just a simple way to demonstrate a circular reference:

obj = list()
obj.append(obj)

	Class with a self-referencing attribute. Another simple example for
demonstration purposes:

class SelfRef(object):

 def __init__(self):
 self.ref = self

obj = SelfRef()

	A tree node class that knows its parent and children. This is a more practical
example and is very similar to what is done in
xml.dom.minidom [https://docs.python.org/3/library/xml.dom.minidom.html]:

class Node(object):

 def __init__(self):
 self.parentNode = None
 self.childNodes = []

 def appendChild(self, node):
 node.parentNode = self
 self.childNodes.append(node)

obj = Node()
obj.appendChild(Node())

2.4. Tools

This section lists some tools that can be used to detect memory leaks, garbage
objects, and memory usage in Python.

TODO: Write section

3. Yagot pytest plugin

The yagot pytest plugin is automatically installed along with the yagot
package. It adds the following group of command line options to pytest:

Garbage object tracking using Yagot:

--yagot Enables checking for collected and uncollectable objects caused by
 pytest test cases. Default: Env.var YAGOT (set to non-empty), or False.

--yagot-leaks-only Limits the checking to only uncollectable (=leak) objects. Default:
 Env.var YAGOT_LEAKS_ONLY (set to non-empty), or False.

--yagot-ignore-types=TYPE[,TYPE[...]]
 Type name or module.path.class name of collected and uncollectable
 objects for which test cases will be ignored. Multiple comma-separated
 type names can be specified on each option, and in addition the option
 can be specified multiple times. The types must be specified as
 represented by the str(type) function (for example, "int" or
 "mymodule.MyClass"). Default: Env.var YAGOT_IGNORE_TYPES, or empty list.

4. API reference

This section describes the API of Yagot.

There are two main elements of the API:

	yagot.garbage_checked(): A decorator that checks for
uncollectable objects and optionally for collected objects
caused by the decorated function or method and raises AssertionError if
detected.

	yagot.GarbageTracker: A class that checks for
uncollectable objects and optionally for collected objects
caused during a tracking period. This is a plumbing class the
yagot.garbage_checked() decorator and the pytest plugin of Yagot use, and
that other packages building on Yagot can also use.

4.1. yagot.garbage_checked

	
yagot.garbage_checked(leaks_only=False, ignore_types=None)

	Decorator that checks for uncollectable objects and optionally for
collected objects caused by the decorated function or method, and
raises AssertionError if such objects are detected.

The decorated function or method needs to make sure that any objects it
creates are deleted again, either implicitly (e.g. by a local variable
going out of scope upon return) or explicitly. Ideally, no garbage is
created that way, but whether that is actually the case is exactly what the
decorator tests for. Also, it is possible that your code is clean but
other modules your code uses are not clean, and that will surface this way.

Note that this decorator has arguments, so it must be specified with
parenthesis, even when relying on the default argument values:

@yagot.garbage_checked()
test_something():
 # do some tests

	Parameters

	
	leaks_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean to limit the checks to only
uncollectable objects. By default, collected objects
and uncollectable objects are checked for.

	ignore_types (iterable [https://docs.python.org/2/glossary.html#term-iterable]) – None or iterable of Python
types or type names that are set as additional garbage types to
ignore, in addition to frame and code that
are always ignored.

If any detected object has one of the types to be ignored, the entire
set of objects caused by the decorated function or method is ignored.

Each type can be specified as a type object or as a string with
the type name as represented by the str(type) function (for
example, “int” or “mymodule.MyClass”).

None or an empty iterable means not to ignore any types.

4.2. yagot.GarbageTracker

	
class yagot.GarbageTracker

	The GarbageTracker class provides a singleton garbage tracker that can track
uncollectable objects and optionally collected objects
that emerged during a tracking period.

Methods

	assert_message

	Return a formatted multi-line string for the assertion message for the collected objects or uncollectable objects detected during the tracking period.

	disable

	Disable the garbage tracker.

	enable

	Enable the garbage tracker and control what objects it checks for.

	format_obj

	Return a formatted string for a single object.

	get_tracker

	Returns the singleton garbage tracker object.

	ignore

	Ignore the current tracking period for this garbage tracker, if it is enabled.

	ignore_types

	Set additional Python types to be ignored as collected objects or uncollectable objects.

	start

	Start the tracking period for this garbage tracker.

	stop

	Stop the tracking period for this garbage tracker.

Attributes

	enabled

	Boolean indicating the enablement status of the garbage tracker.

	garbage

	List of new collected objects or uncollectable objects that emerged during the last tracking period.

	ignored

	Boolean indicating whether the current tracking period should be ignored.

	ignored_type_names

	Return the Python type names to be ignored as collected objects or uncollectable objects.

	leaks_only

	Boolean indicating whether the tracker limits the checks to uncollectable objects (= leaks) only.

Details

	
static get_tracker()

	Returns the singleton garbage tracker object.

The object is created when accessed through this method for the first
time.

	
enabled

	Boolean indicating the enablement status of the garbage tracker.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
ignored

	Boolean indicating whether the current tracking period should be
ignored.

This flag is set via ignore().

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
leaks_only

	Boolean indicating whether the tracker limits the checks to
uncollectable objects (= leaks) only.

This flag can be set via enable().

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
garbage

	List of new collected objects or
uncollectable objects that emerged during the last tracking
period.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
ignored_type_names

	Return the Python type names to be ignored as collected objects
or uncollectable objects.

The types frame and code that are always
ignored are included in the returned list.

	Returns

	
	List of Python type names to be ignored as represented by

	the str(type) function (for example “int” or
“mymodule.MyClass”).

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
enable(leaks_only=False)

	Enable the garbage tracker and control what objects it checks for.

	Parameters

	leaks_only (bool [https://docs.python.org/3/library/functions.html#bool]) – Boolean limiting the checks to
uncollectable objects (=leaks) only.

	
disable()

	Disable the garbage tracker.

	
ignore()

	Ignore the current tracking period for this garbage tracker, if it is
enabled. This causes ignored to be set.

	
ignore_types(type_list)

	Set additional Python types to be ignored as collected objects
or uncollectable objects.

The specified types are in addition to the following list of types that
are aways ignored because they often appear as collectable objects
when catching exceptions (e.g. when using pytest.raises()):

	frame

	code

If the list of collected or uncollectable objects detected during the
tracking period contains an object with a type that is to be ignored,
the entire tracking period is ignored.

	Parameters

	type_list (iterable [https://docs.python.org/2/glossary.html#term-iterable]) – Iterable of Python types, or
None.

Each type can be specified as a type object or as a string with
the type name as represented by the str(type) function (for
example, “int” or “mymodule.MyClass”).

None or an empty iterable means not to set additional types.

	
start()

	Start the tracking period for this garbage tracker.

Must be called before the code to be tracked is run.

	
stop()

	Stop the tracking period for this garbage tracker.

Must be called after the code to be tracked is run.

	
assert_message(location=None, max=10)

	Return a formatted multi-line string for the assertion message for
the collected objects or uncollectable objects
detected during the tracking period.

	Parameters

	
	location (string) – Location of the function that created
the objects, e.g. in the notation “module::function”.

	max (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of objects to be included in the
returned string.

	Returns

	Formatted multi-line string.

	Return type

	unicode string

	
static format_obj(obj)

	Return a formatted string for a single object.

	Parameters

	obj (object [https://docs.python.org/3/library/functions.html#object]) – The object.

	Returns

	Formatted string for the object.

	Return type

	unicode string

4.3. yagot.__version__

The version of the yagot package can be accessed by
programs using the yagot.__version__ variable:

	
yagot._version.__version__ = '0.5.0'

	The full version of this package including any development levels, as a
string.

Possible formats for this version string are:

	“M.N.P.dev1”: Development level 1 of a not yet released version M.N.P

	“M.N.P”: A released version M.N.P

Note: For tooling reasons, the variable is shown as
yagot._version.__version__, but it should be used as
yagot.__version__.

5. Development

This section only needs to be read by developers of the
Yagot project,
including people who want to make a fix or want to test the project.

5.1. Repository

The repository for the Yagot project is on GitHub:

https://github.com/andy-maier/python-yagot

5.2. Setting up the development environment

	If you have write access to the Git repo of this project, clone it using
its SSH link, and switch to its working directory:

$ git clone git@github.com:andy-maier/python-yagot.git
$ cd python-yagot

If you do not have write access, create a fork on GitHub and clone the
fork in the way shown above.

	It is recommended that you set up a virtual Python environment [https://docs.python-guide.org/en/latest/dev/virtualenvs/].
Have the virtual Python environment active for all remaining steps.

	Install the project for development.
This will install Python packages into the active Python environment:

$ make develop

	This project uses Make to do things in the currently active Python
environment. The command:

$ make

displays a list of valid Make targets and a short description of what each
target does.

5.3. Building the documentation

The ReadTheDocs (RTD) site is used to publish the documentation for the
project package at https://yagot.readthedocs.io/

This page is automatically updated whenever the Git repo for this package
changes the branch from which this documentation is built.

In order to build the documentation locally from the Git work directory,
execute:

$ make builddoc

The top-level document to open with a web browser will be
build_doc/html/docs/index.html.

5.4. Testing

All of the following make commands run the tests in the currently active
Python environment.
Depending on how the yagot package is installed in
that Python environment, either the directories in the main repository
directory are used, or the installed package.
The test case files and any utility functions they use are always used from
the tests directory in the main repository directory.

The tests directory has the following subdirectory structure:

tests
 +-- plugintest Plugin tests
 +-- unittest Unit tests

The unit tests and plugin tests are run by executing:

$ make test

Test execution can be modified by a number of environment variables, as
documented in the make help (execute make help).

To run the unit and plugin tests in all supported Python environments, the
Tox tool can be used. It creates the necessary virtual Python environments and
executes make test (i.e. the unit and function tests) in each of them.

For running Tox, it does not matter which Python environment is currently
active, as long as the Python tox package is installed in it:

$ tox # Run tests on all supported Python versions
$ tox -e py27 # Run tests on Python 2.7

5.5. Contributing

Third party contributions to this project are welcome!

In order to contribute, create a Git pull request [https://help.github.com/articles/using-pull-requests/], considering this:

	Test is required.

	Each commit should only contain one “logical” change.

	A “logical” change should be put into one commit, and not split over multiple
commits.

	Large new features should be split into stages.

	The commit message should not only summarize what you have done, but explain
why the change is useful.

What comprises a “logical” change is subject to sound judgement. Sometimes, it
makes sense to produce a set of commits for a feature (even if not large).
For example, a first commit may introduce a (presumably) compatible API change
without exploitation of that feature. With only this commit applied, it should
be demonstrable that everything is still working as before. The next commit may
be the exploitation of the feature in other components.

For further discussion of good and bad practices regarding commits, see:

	OpenStack Git Commit Good Practice [https://wiki.openstack.org/wiki/GitCommitMessages]

	How to Get Your Change Into the Linux Kernel [https://www.kernel.org/doc/Documentation/SubmittingPatches]

Further rules:

	The following long-lived branches exist and should be used as targets for
pull requests:

	master - for next functional version

	stable_$MN - for fix stream of released version M.N.

	We use topic branches for everything!

	Based upon the intended long-lived branch, if no dependencies

	Based upon an earlier topic branch, in case of dependencies

	It is valid to rebase topic branches and force-push them.

	We use pull requests to review the branches.

	Use the correct long-lived branch (e.g. master or stable_0.2) as a
merge target.

	Review happens as comments on the pull requests.

	At least one approval is required for merging.

	GitHub meanwhile offers different ways to merge pull requests. We merge pull
requests by rebasing the commit from the pull request.

5.6. Releasing a version to PyPI

This section describes how to release a version of Yagot
to PyPI.

It covers all variants of versions:

	Releasing the master branch as a new (major or minor) version

	Releasing a fix stream branch of an already released version as a new fix
version

The description assumes that the project repo is cloned locally.
Their upstream repos are assumed to have the remote name origin.

	Switch to your work directory of the project repo (this is where
the Makefile is), and perform the following steps in that directory.

	Set shell variables for the version and branch to be released.

When releasing the master branch:

$ MNP="0.2.0" # Full version number M.N.P of version to be released
$ MN="0.2" # Major and minor version number M.N of version to be released
$ BRANCH="master" # Branch to be released

When releasing a fix stream branch:

$ MNP="0.1.1" # Full version number M.N.P of version to be released
$ MN="0.1" # Major and minor version number M.N of version to be released
$ BRANCH="stable_$MN" # Branch to be released

	Check out the branch to be released, make sure it is up to date with
upstream, and create a topic branch for the version to be released:

$ git checkout $BRANCH
$ git pull
$ git checkout -b release_$MNP

	Edit the version file:

$ vi yagot/_version.py

and set the version to be released:

__version__ = 'M.N.P'

where M.N.P is the version to be released, e.g. 0.2.0.

You can verify that this version is picked up by setup.py as follows:

$./setup.py --version
0.2.0

	Edit the change log:

$ vi docs/changes.rst

To make the following changes for the version to be released:

	Finalize the version to the version to be released.

	Remove the statement that the version is in development.

	Update the statement which fixes of the previous stable version
are contained in this version. If there is no fix release
of the previous stable version, the line can be removed.

	Change the release date to today´s date.

	Make sure that all changes are described. This can be done by comparing
the changes listed with the commit log of the master branch.

	Make sure the items in the change log are relevant for and understandable
by users of the project.

	In the “Known issues” list item, remove the link to the issue tracker
and add text for any known issues you want users to know about.

Note: Just linking to the issue tracker quickly becomes incorrect for a
released version and is therefore only good during development of a
version. In the “Starting a new version” section, the link will be added
again for the new version.

	Perform a complete build (in your favorite Python virtual environment):

$ make clobber
$ make all

If this fails, fix and iterate over this step until it succeeds.

	Commit the changes and push to upstream:

$ git status # to double check which files have been changed
$ git commit -asm "Release $MNP"
$ git push --set-upstream origin release_$MNP

	On GitHub, create a Pull Request for branch release_$MNP. This will
trigger the CI runs in Travis and Appveyor.

Important: When creating Pull Requests, GitHub by default targets
the master branch. If you are releasing a fix version, you need to
change the target branch of the Pull Request to stable_$MN.

	Perform a complete test using Tox:

$ tox

This will create virtual Python environments for all supported Python
versions that are installed on your system and will invoke make test
in each of them.

	If any of the tests mentioned above fails, fix the problem and iterate
back to step 6. until they all succeed.

	On GitHub, once the CI runs for the Pull Request succeed:

	Merge the Pull Request (no review is needed)

	Delete the branch of the Pull Request (release_$MNP)

	Checkout the branch you are releasing, update it from upstream, and
delete the local topic branch you created:

$ git checkout $BRANCH
$ git pull
$ git branch -d release_$MNP

	Tag the version:

This step tags the local repo and pushes it upstream:

$ git status # double check that the branch to be released (`$BRANCH`) is checked out
$ git tag $MNP
$ git push --tags

	If you released the master branch it will be fixed separately, so it needs
a new fix stream.

	Create a branch for its fix stream and push it upstream:

$ git status # double check that the branch to be released (`$BRANCH`) is checked out
$ git checkout -b stable_$MN
$ git push --set-upstream origin stable_$MN

	Log on to RTD [https://readthedocs.org/], go to the project,
and activate the new branch stable_$MN as a version to be built.

	On GitHub, edit the new tag, and create a release description on it. This
will cause it to appear in the Release tab.

	On GitHub, close milestone M.N.P.

Note: Issues with that milestone will be moved forward in the section
“Starting a new version”.

	Upload the package to PyPI:

$ make upload

Attention!! This only works once. You cannot re-release the same
version to PyPI.

Verify that it arrived on PyPI: https://pypi.python.org/pypi/yagot/

5.7. Starting a new version

This section shows the steps for starting development of a new version of the
Yagot project in its Git repo.

It covers all variants of new versions:

	A new (major or minor) version for new development based upon the master
branch.

	A new fix version based on a stable_$MN fix stream branch.

	Switch to the work directory of your repo clone and perform the following
steps in that directory.

	Set shell variables for the version to be started and for the branch it is
based upon.

When starting a new major or minor version based on the master branch:

$ MNP="0.2.0" # Full version number M.N.P of version to be started
$ MN="0.2" # Major and minor version number M.N of version to be started
$ BRANCH="master" # Branch the new version is based on

When releasing a fix version based on a fix stream branch:

$ MNP="0.1.1" # Full version number M.N.P of version to be started
$ MN="0.1" # Major and minor version number M.N of version to be started
$ BRANCH="stable_$MN" # Branch the new version is based on

	Check out the branch the new version is based upon, make sure it is up to
date with upstream, and create a topic branch for the new version:

$ git checkout $BRANCH
$ git pull
$ git checkout -b start_$MNP

	Edit the version file:

$ vi yagot/_version.py

and set the version to the new development version:

__version__ = 'M.N.P.dev1'

where M.N.P is the new version to be started, e.g. 0.2.0.

	Edit the change log:

$ vi docs/changes.rst

To insert the following section before the top-most section:

yagot 0.2.0.dev1
--

This version contains all fixes up to yagot 0.1.x.

Released: not yet

Incompatible changes:

Deprecations:

Bug fixes:

Enhancements:

Cleanup:

Known issues:

* See `list of open issues`_.

.. _`list of open issues`: https://github.com/andy-maier/python-yagot/issues

	Commit the changes and push to upstream:

$ git status # to double check which files have been changed
$ git commit -asm "Start $MNP"
$ git push --set-upstream origin start_$MNP

	On Github, create a Pull Request for branch start_$MNP.

Important: When creating Pull Requests, GitHub by default targets
the master branch. If you are starting a fix version, you need to
change the target branch of the Pull Request to stable_$MN.

	On GitHub, once all of these tests succeed:

	Merge the Pull Request (no review is needed)

	Delete the branch of the Pull Request (release_$MNP)

	Checkout the branch the new version is based upon, update it from
upstream, and delete the local topic branch you created:

$ git checkout $BRANCH
$ git pull
$ git branch -d start_$MNP

	On GitHub, create a new milestone M.N.P for the version that is started.

	On GitHub, list all open issues that still have a milestone of less than
M.N.P set, and update them as needed to target milestone M.N.P.

6. Appendix

This section contains information that is referenced from other sections,
and that does not really need to be read in sequence.

6.1. Compatibility and deprecation policy

The Yagot project uses the rules of
Semantic Versioning 2.0.0 [https://semver.org/spec/v2.0.0.html] for compatibility between versions, and for
deprecations. The public interface that is subject to the semantic versioning
rules and specificically to its compatibility rules are the APIs and commands
described in this documentation.

The semantic versioning rules require backwards compatibility for new minor
versions (the ‘N’ in version ‘M.N.P’) and for new patch versions (the ‘P’ in
version ‘M.N.P’).

Thus, a user of an API or command of the Yagot project
can safely upgrade to a new minor or patch version of the
yagot package without encountering compatibility
issues for their code using the APIs or for their scripts using the commands.

In the rare case that exceptions from this rule are needed, they will be
documented in the Change log.

Occasionally functionality needs to be retired, because it is flawed and a
better but incompatible replacement has emerged. In the
Yagot project, such changes are done by deprecating
existing functionality, without removing it immediately.

The deprecated functionality is still supported at least throughout new minor
or patch releases within the same major release. Eventually, a new major
release may break compatibility by removing deprecated functionality.

Any changes at the APIs or commands that do introduce
incompatibilities as defined above, are described in the Change log.

Deprecation of functionality at the APIs or commands is
communicated to the users in multiple ways:

	It is described in the documentation of the API or command

	It is mentioned in the change log.

	It is raised at runtime by issuing Python warnings of type
DeprecationWarning (see the Python warnings [https://docs.python.org/2/library/warnings.html#module-warnings] module).

Since Python 2.7, DeprecationWarning messages are suppressed by default.
They can be shown for example in any of these ways:

	By specifying the Python command line option: -W default

	By invoking Python with the environment variable: PYTHONWARNINGS=default

It is recommended that users of the Yagot project
run their test code with DeprecationWarning messages being shown, so they
become aware of any use of deprecated functionality.

Here is a summary of the deprecation and compatibility policy used by
the Yagot project, by version type:

	New patch version (M.N.P -> M.N.P+1): No new deprecations; no new
functionality; backwards compatible.

	New minor release (M.N.P -> M.N+1.0): New deprecations may be added;
functionality may be extended; backwards compatible.

	New major release (M.N.P -> M+1.0.0): Deprecated functionality may get
removed; functionality may be extended or changed; backwards compatibility
may be broken.

6.2. Troubleshooting

Here are some trouble shooting hints for …

6.3. Glossary

	collectable objects

	objects Python cannot immediately release when they become unreachable
(e.g. when their variable goes out of scope) and that are therefore
supposed to be released by the Python garbage collector. Most of the
time, this is caused by the presence of circular references into which
the object to be released is involved. The Python garbage collector is
designed to handle circular references.

	collected objects

	collectable objects that have successfully been released by the
Python garbage collector.

	uncollectable objects

	collectable objects that could not be released by the Python
garbage collector, even when running a full collection. Uncollectable
objects remain allocated in the last generation of the garbage collector
and their memory remains allocated until the Python process terminates.
They can be considered memory leaks.

	string

	a unicode string or a byte string

	unicode string

	a Unicode string type (unicode [https://docs.python.org/2/library/functions.html#unicode] in
Python 2, and str [https://docs.python.org/3/library/stdtypes.html#str] in Python 3)

	byte string

	a byte string type (str [https://docs.python.org/2/library/functions.html#str] in Python 2, and
bytes [https://docs.python.org/3/library/stdtypes.html#bytes] in Python 3). Unless otherwise
indicated, byte strings in this project are always UTF-8 encoded.

	number

	one of the number types int [https://docs.python.org/2/library/functions.html#int], long [https://docs.python.org/2/library/functions.html#long] (Python 2
only), or float [https://docs.python.org/2/library/functions.html#float].

	integer

	one of the integer types int [https://docs.python.org/2/library/functions.html#int] or long [https://docs.python.org/2/library/functions.html#long] (Python 2
only).

	callable

	a callable object; for example a function, a class (calling it returns a
new object of the class), or an object with a __call__() [https://docs.python.org/2/reference/datamodel.html#object.__call__]
method.

	hashable

	a hashable object. Hashability requires an object not only to be able to
produce a hash value with the hash() [https://docs.python.org/2/library/functions.html#hash] function, but in addition
that objects that are equal (as per the == operator) produce equal
hash values, and that the produced hash value remains unchanged across
the lifetime of the object. See term “hashable” [https://docs.python.org/3/glossary.html#term-hashable]
in the Python glossary, although the definition there is not very crisp.
A more exhaustive discussion of these requirements is in
“What happens when you mess with hashing in Python” [https://www.asmeurer.com/blog/posts/what-happens-when-you-mess-with-hashing-in-python/]
by Aaron Meurer.

6.4. References

	Python Glossary

	
	Python 2.7 Glossary [https://docs.python.org/2.7/glossary.html]

	Python 3.4 Glossary [https://docs.python.org/3.4/glossary.html]

7. Change log

7.1. yagot 0.5.0

Released: 2020-03-07

Initial version releaed to Pypi.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | P
 | S
 | U

_

 	
 	__version__ (in module yagot._version)

A

 	
 	assert_message() (yagot.GarbageTracker method)

B

 	
 	byte string

C

 	
 	callable

 	
 	collectable objects

 	collected objects

D

 	
 	disable() (yagot.GarbageTracker method)

E

 	
 	enable() (yagot.GarbageTracker method)

 	
 	enabled (yagot.GarbageTracker attribute)

F

 	
 	format_obj() (yagot.GarbageTracker static method)

G

 	
 	garbage (yagot.GarbageTracker attribute)

 	garbage_checked() (in module yagot)

 	
 	GarbageTracker (class in yagot)

 	get_tracker() (yagot.GarbageTracker static method)

H

 	
 	hashable

I

 	
 	ignore() (yagot.GarbageTracker method)

 	ignore_types() (yagot.GarbageTracker method)

 	
 	ignored (yagot.GarbageTracker attribute)

 	ignored_type_names (yagot.GarbageTracker attribute)

 	integer

L

 	
 	leaks_only (yagot.GarbageTracker attribute)

N

 	
 	number

P

 	
 	Python Glossary

S

 	
 	start() (yagot.GarbageTracker method)

 	
 	stop() (yagot.GarbageTracker method)

 	string

U

 	
 	uncollectable objects

 	
 	unicode string

 _static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Yagot - Yet Another Garbage Object Tracker for Python

 		
 Introduction

 		
 Usage

 		
 Installation

 		
 Supported environments

 		
 Installing

 		
 Installing a different version

 		
 Verifying the installation

 		
 Background

 		
 Understanding object release in Python

 		
 The issues with collected and uncollectable objects

 		
 Circular reference examples and detection

 		
 Tools

 		
 Yagot pytest plugin

 		
 API reference

 		
 yagot.garbage_checked

 		
 yagot.GarbageTracker

 		
 yagot.__version__

 		
 Development

 		
 Repository

 		
 Setting up the development environment

 		
 Building the documentation

 		
 Testing

 		
 Contributing

 		
 Releasing a version to PyPI

 		
 Starting a new version

 		
 Appendix

 		
 Compatibility and deprecation policy

 		
 Troubleshooting

 		
 Glossary

 		
 References

 		
 Change log

 		
 yagot 0.5.0

_static/up.png

_static/up-pressed.png

